Spaces with star countable extent
نویسندگان
چکیده
منابع مشابه
NONNORMAL SPACES Cp(X) WITH COUNTABLE EXTENT
Examples of spaces X are constructed for which Cp(X) is not normal but all closed discrete subsets are countable. A monolithic example is constructed in ZFC and a separable first countable example is constructed using ♦.
متن کاملRemarks on Star Countable Discrete Closed Spaces
In this paper, we prove the following statements: (1) There exists a Tychonoff star countable discrete closed, pseudocompact space having a regular-closed subspace which is not star countable. (2) Every separable space can be embedded into an absolutely star countable discrete closed space as a closed subspace. (3) Assuming 20 = 21 , there exists a normal absolutely star countable discrete clos...
متن کاملOn nowhere first-countable compact spaces with countable π-weight
The minimum weight of a nowhere first-countable compact space of countable π-weight is shown to be κB, the least cardinal κ for which the real line R can be covered by κ many nowhere dense sets.
متن کاملCountable Connected Spaces
Introduction, Let © be the class of all countable and connected perfectly separable Hausdorff spaces containing more than one point. I t is known that an ©-space cannot be regular or compact. Urysohn, using a complicated identification of points, has constructed the first example of an ©-space. Two ©-spaces, X and X*, more simply constructed and not involving identifications, are presented here...
متن کاملCountable Toronto spaces
A space X is called an α-Toronto space if X is scattered of Cantor– Bendixson rank α and is homeomorphic to each of its subspaces of the same rank. We answer a question of Steprāns by constructing a countable α-Toronto space for each α ≤ ω. We also construct consistent examples of countable α-Toronto spaces for each
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Commentationes Mathematicae Universitatis Carolinae
سال: 2016
ISSN: 0010-2628,1213-7243
DOI: 10.14712/1213-7243.2015.176